POLYNOMIALS

STD X

EXTRA SUGGESTIVE QUESTIONS

1. If one zero of the polynomial $5z^2 + 13z - p$ is reciprocal of the other, then find p.

2. If the product of two zeroes of polynomial $2x^3 + 3x^2 - 5x - 6$ is 3, then find its third zero.

3. Find the polynomial of least degree which should be subtracted from the polynomial $x4 + 2x^3 - 4x^2 + 6x - 3$ so that it is exactly divisible by $x^2 - x + 1$.

4. Is polynomial $y^4 + 4y^2 + 5$ have zeroes or not?

5. Write a quadratic polynomial, sum of whose zeroes is $2\sqrt{3}$ and product is 5.

6. Write the zeroes of the polynomial $x^2 + 2x + 1$.

7. If the zeroes of the polynomial $f(x) = x^3 - 12x^2 + 39x + a$ are in AP, find the value of a.

8. A polynomial q(x) of degree zero is added to the polynomial $2x^3 + 5x^2 - 14x + 10$ so that it becomes exactly divisible by 2x - 3. Find the g(x).

9. Find the zeroes of the quadratic polynomial $x^2 + 5x + 6$ and verify the relationship between the zeroes and the coefficients.

10. If the zeroes of polynomial $x^3 - ax^2 + bx - c$ are in AP then show that $2a^3 - 9ab + 27c = 0$

11. If 1 and –1 are zeroes of polynomial $Lx^4 + Mx^3 + Nx^2 + Rx + P$, show that L + N + P = M + R = 0

12. Draw graph of the function $f(x) = -2x^2 + 4x$.

13. If x + a is a factor of the polynomial $x^2 + px + q$ and $x^2 + mx + n$ prove that **14.** Find a cubic polynomial with the sume of the polynomial $x^2 + mx + n$ prove that

14. Find a cubic polynomial with the sum, sum of the product of its zeroes taken two at a time and product of its zeroes are $3, \frac{-1}{2}, \frac{5}{4}$ respectively.

$$\frac{2+\sqrt{5}}{2}, \frac{2-\sqrt{5}}{2}, 4$$

15. Write cubic polynomial whose zeroes are 2 2 2

16. α , β , γ are zeroes of cubic polynomial kx³ – 5x + 9. If $\alpha^3 + \beta^3 + \gamma^3 = 27$, find the value of k.

17. α , β , γ are zeroes of cubic polynomial $x^3 - 12x^2 + 44x + c$. If α , β , γ are in AP, find the value of c.

18. Two zeroes of cubic polynomial $ax^3 + 3x^2 - bx - 6$ are -1 and -2. Find the third zero and value of a and b.

19. α , β , γ are zeroes of cubic polynomial $x^3 - 2x^2 + qx - r$.

If $\alpha + \beta = 0$ then show that 2q = r.

20. α , β , γ are zeroes of polynomial $x^3 + px^2 + qx + 2$ such that α .

 β + 1 = 0. Find the value of 2p + q + 5.

1. –5	Answers			
	2.1	3. x – 1	4. No	5. $x^2 - 2\sqrt{3x} + 5$
6. –1, –1	7. –28	8. g(x) = -7	93, -2	14. $k(4x^3 - 12x^2 - 2x - 5)$
15. k(4x ³ - 24x ² + 31x + 4)	16. k = -1	17. c = -48	18. a= 2, b = 5, third zero = $\frac{3}{2}$	20. 0