STD X

EXTRA SUGGESTIVE QUESTIONS

1. If one zero of the polynomial $5 z^{2}+13 z-p$ is reciprocal of the other, then find p.
2. If the product of two zeroes of polynomial $2 x^{3}+3 x^{2}-5 x-6$ is 3 , then find its third zero.
3. Find the polynomial of least degree which should be subtracted from the polynomial $x 4+2 x^{3}-4 x^{2}+6 x-3$ so that it is exactly divisible by $x^{2}-x+1$.
4. Is polynomial $y^{4}+4 y^{2}+5$ have zeroes or not?
5. Write a quadratic polynomial, sum of whose zeroes is $2 \sqrt{3}$ and product is 5 .
6. Write the zeroes of the polynomial $x^{2}+2 x+1$.
7. If the zeroes of the polynomial $f(x)=x^{3}-12 x^{2}+39 x+a$ are in AP, find the value of a.
8. A polynomial $g(x)$ of degree zero is added to the polynomial $2 x^{3}+5 x^{2}-14 x+10$ so that it becomes exactly divisible by $2 x-3$. Find the $g(x)$.
9. Find the zeroes of the quadratic polynomial $x^{2}+5 x+6$ and verify the relationship between the zeroes and the coefficients.
10. If the zeroes of polynomial $x^{3}-a x^{2}+b x-c$ are in AP then show that $2 a^{3}-9 a b+27 c=0$
11. If 1 and -1 are zeroes of polynomial $L x^{4}+M x^{3}+N x^{2}+R x+P$, show that $L+N+P=M+R=0$
12. Draw graph of the function $f(x)=-2 x^{2}+4 x$.
13. If $x+a$ is a factor of the polynomial $x^{2}+p x+q$ and $x^{2}+m x+n$ prove that $a=\frac{n-q}{m-p}$.
14. Find a cubic polynomial with the sum, sum of the product of its zeroes taken two at a time and product of its zeroes are $3, \frac{-1}{2}, \frac{5}{4}$ respectively.
15. Write cubic polynomial whose zeroes are $\frac{2+\sqrt{5}}{2}, \frac{2-\sqrt{5}}{2}, 4$.
16. α, β, y are zeroes of cubic polynomial $k x^{3}-5 x+9$.

If $\alpha^{3}+\beta^{3}+\gamma^{3}=27$, find the value of k.
17. α, β, y are zeroes of cubic polynomial $x^{3}-12 x^{2}+44 x+c$.

If α, β, γ are in AP, find the value of c.
18. Two zeroes of cubic polynomial $a x^{3}+3 x^{2}-b x-6$ are -1 and -2 . Find the third zero and value of a and b.
19. α, β, y are zeroes of cubic polynomial $x^{3}-2 x^{2}+q x-r$.

If $\alpha+\beta=0$ then show that $2 q=r$.
20. α, β, y are zeroes of polynomial $x^{3}+p x^{2}+q x+2$ such that α.
$\beta+1=0$. Find the value of $2 p+q+5$.
Answers

1. -5	2.1	3. $x-1$	4. No	5. $x^{2}-2 \sqrt{3 x}+5$
$6 .-1,-1$	$7 .-28$	8. $g(x)=-7$	9. $-3,-2$	14. $k\left(4 x^{3}-12 x^{2}-2 x-5\right)$
15. $k\left(4 x^{3}-24 x^{2}+31 x\right.$ $+4)$	16. $k=-1$	17. $c=-48$	$18 . a=2$, $b=5$, third zero $=\frac{3}{2}$	20.0

